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ABSTRACT: Chromatography separates the different components of complex mixtures and generates a fingerprint representing
the chemical composition of the sample. The resulting data structure depends on the characteristics of the detector used,
univariate for devices such as a flame ionization detector (FID) or multivariate for mass spectroscopy (MS). This study addresses
the potential use of a univariate signal for a nontargeted approach to (i) classify samples according to a given process or
perturbation, (ii) evaluate the feasibility of developing a screening procedure to select candidates related to the process, and (iii)
provide insight into the chemical mechanisms that are affected by the perturbation. To achieve this, it was necessary to use and
develop methods for data preprocessing and visualization tools to assist an analytical chemist to view and interpret complex
multidimensional data sets. Dichloromethane Port wine extracts were collected using GC-FID; the chromatograms were then
aligned with correlation optimized warping (COW) and subsequently analyzed with multivariate statistics (MVA) by principal
component analysis (PCA) and partial least-squares regression (PLS-R). Furthermore, wavelets were used for peak calling and
alignment refinement, and the resulting matrix was used to perform kinetic network reconstruction via correlation networks and
maximum spanning trees. Network-target correlation projections were used to screen for potential chromatographic regions/
peaks related to aging mechanisms. Results from PLS between aligned chromatograms and target molecules showed high X to Y
correlations of 0.91, 092, and 0.89 with 5-hydroxymethylfurfural (HMF) (Maillard), acetaldehyde (oxidation), and 4,5-dimethyl-
(5H)-3-hydroxy-2-furanone, respectively. The context of the correlation (and therefore likely kinetic) relationships among
compounds detected by GC-FID and the relationships between target compounds within different regions of the network can be
clearly seen.
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■ INTRODUCTION

Port wine is a fortified wine produced in the Douro region of
Portugal. After the vinification process, wines are exclusively
barrel aged (tawnys) or matured for 2 years in a cask and then
bottled (vintage).
The aromatic profile of Port wine changes during aging as

the result of several underlying mechanisms. Therefore, if one
wants to understand or modulate the sensory attributes of Port,
it is important to understand these mechanisms and the
interconnections among them. Several of the mechanisms are
to a large extent already described as Maillard1−7 or
oxidation;8−12 nevertheless, the overlaps between these two
mechanisms are not well-known.
In Port wines sotolon was recognized as a key molecule in

the “perceived age” of barrel storage Port wine and
consequently in the aroma quality of the final product. Its
concentration can range from a few dozen micrograms per liter
in a young wine to 1 mg/L in wines older than 50 years. The
odor threshold has been estimated to be 19 μg/L.13−20

The Maillard reaction has been suggested by several authors
to be responsible for the formation of sotolon as a product of a
reaction involving hexoses and pentoses in the presence of
cysteine4 and from the aldol condensation of butane-2,3-dione
and hydroxyacetaldehyde.21 On the other hand, several papers
have linked sotolon formation with oxidation.19,22−25 Both
oxygen and temperature influence sotolon concentration, which

suggests that its origin involves a connection between oxidation
and Maillard mechanisms.26

Therefore, wine aging is a complex system, which requires
more information to be analyzed to better understand the
mechanisms at play. Given this, techniques that are able to
capture information about a broader range of compounds
participating in the aging process are necessary to achieve a
better understanding thereof.
Metabolomics is defined as the study of “as many small

metabolites as possible” in a system.27 In this paper we attempt
to describe an example of chemiomics, which we define to be
the study of the relationships between as many chemical
compounds as possible in a complex chemical (nonenzymatic)
system. To accomplish this by chemical profiling two strategies
can be employed: (i) “targeted analysis”, using a priori
knowledge of which compounds to analyze, which requires
their identification and manual quantification, or (ii) “un-
targeted analysis”, in which one tries to detect as many
compounds as possible to acquire sample fingerprints, which
will be submitted to multivariate analyses and network analysis
for further contextualization. The identification and quantita-
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tion are then performed on the variables that are found to be
associated with the principal components/correlation vectors as
determined by multivariate and network analysis.
Spectroscopic detectors, such as those based on ultraviolet−

visible (UV−vis), Fourier transform infrared (FTIR), or nuclear
magnetic resonance (NMR) spectroscopy, are largely employed
to obtain chemical fingerprints that can be used for sample
classification as well for chemical quantitation.28−37 The
extremely convoluted resulting spectra can be further processed
with multivariate statistics (MVA) techniques that compensate,
to a certain extent, for the absence of structural information in
complex chemical mixtures.
Despite the versatility of these detectors, the absence of

structural information, due to the extremely convoluted signal,
constitutes a major drawback in obtaining molecular identi-
fications if there is a need to study complex systems that require
kinetic contextualization.
Chromatography has long been used for the separation of

molecules enabling both the quantitative and qualitative
analysis of constituents in complex mixtures. The separation
of the different components of a complex mixture generates a
fingerprint representing the chemical composition of the
sample. Chromatographic fingerprints taken from samples
under different experimental conditions can then be used to
explain the changes caused by a perturbation.38 Due to the
separation performed by the column, it is possible to identify
structures on the basis of the elution time in a given
chromatographic profile.
Chromatographic data have a huge number of variables, and

principal component analysis (PCA) and partial least-squares
(PLS) are MVA visualization techniques that allow for the
interpretation of multidimensional data sets. When multivariate
analysis involves large data sets, variable selection processes
play an important role because they eliminate the less
significant or noninformative variables. The overall aim of any
variable selection technique is to capture variables from the
original data set that are most specifically related to the
problem of interest and to exclude those variables that are
affected by other sources of variation.
PCA is a nonsupervised technique that decomposes the

original variables of a data set into two matrices: the score and
the loading matrices. The score matrix contains information
about the samples, which are described in terms of their
projection onto the principal components. The loading matrix
contains information about the variables which are also
described in terms of their projection onto the principal
components. The loadings can also be interpreted as the
contribution of the variables for the observed scores
distribution.
Consequently, the use of GC fingerprints with MVA should

make it possible to extract considerable amounts of information
from complex mixtures. The tandem of GC-MVA is, in our
perspective, a middle ground between a rich detector, which
provides structural information (NMR), and detectors such as
FTIR and UV−vis.
Therefore, the aim of this study is to validate the feasibility of

using univariate chromatographic data, in particular, gas
chromatography with a flame ionization detector (GC-FID),
as a screening procedure to classify complex chemical mixtures,
such as wine samples, to identify which compounds are
responsible for differences and to perform network recon-
structions that may indicate underlying kinetic relationships
and mechanisms.

■ MATERIALS AND METHODS
Reagents. The chemicals 3-octanol (97%) 3-hydroxy-4,5-dimethyl-

2(5H)-furanone (≥99.5%), 5-methylfurfural (≥99.5%), 5-hydroxyme-
thylfurfural (≥99.5%), acetaldehyde (≥99.5%), ethyl lactate (98%), 5-
(ethoxymethyl)furfural (≥99.5%), acetic acid (≥99.5%), 2,3-butane-
diol (98%), diethyl succinate (≥99.5%), 2-phenylethanol (≥99.5%),
diethyl malate (>97%), succinic monoethyl ester (≥99.5%),
benzaldehyde (≥99.5%), octanoic acid (≥99.5%), hexanoic acid
(≥99.5%), aspartame (>99%), glutamine (>99%), cysteine (>99%),
serine (>99%), glycine (>99%), arginine (>99%), γ-aminobutyric acid
(>99%), alanine (>99%), tyrosine (>99%), valine (>99%), phenyl-
alanine (>99%), leucine (>99%), ornithine (>99%), lysine (>99%),
homoserine (>98%), norvaline (>98%), homocysteine (>99%), 2-
sulfanylethanol (98%), tetraphenylborate (>99.5%), iodoacetic acid
(>99%), o-phthaldialdehyde (>99%), and n-alkanes (C11−C22) were
obtained from Sigma-Aldrich, USA. cis-5-Hydroxy-2-methyl-1,3-
dioxane (cis-dioxane), cis-4-hydroxymethyl-2-methyl-1,3-dioxolane
(cis-dioxolane), trans-4-hydroxymethyl-2-methyl-1,3-dioxolane (trans-
dioxolane), and trans-5-hydroxy-2-methyl-1,3-dioxane (trans-dioxane)
were synthetized according to the method of Maillard.39

Dicloromethane (HPLC grade) was purchased from LabScan,
Sowinskiego, Gliwice, Poland. Anhydrous sodium sulfate and
methanol (HPLC grade) were obtained from Merck, Darmstadt,
Germany.

Port Wine Samples. The 37 samples used in this study were
between 2 and 60 years of age: one sample for 2, 14, 19, 23, 35, 40, 42,
48, 54, 57, and 60 years of age, two samples for 7 and 20 years of age,
three samples for 4 and 5 years of age, and 10 samples of 10 years of
age. All wines were matured in oak barrels. These samples were
supplied by the Instituto do Vinho do Porto e do Douro. The wines
were made following standard traditional winemaking procedures for
Port wine and have been certified.

Analytical Procedure. Volatiles Extraction. A liquid−liquid
extraction was performed to extract the volatile fraction from each
sample. The procedure used was as follows: 5 g of anhydrous sodium
sulfate and 50 μL of internal standard (3-octanol) were added to 50
mL of sample and were extracted twice with 5 mL of dicloromethane
using a magnetic stir bar for 5 min per extraction, and 2 mL of the
resulting organic phase was concentrated under a nitrogen stream four
times. The extract was then analyzed by GC (Agilent 5980, USA) with
FID detection. Two microliters of the extract was injected.
Chromatographic conditions were the following; column BP-21 (50
m × 0.25 mm × 0.25 μm) fused silica (SGE, Portugal); hydrogen (5.0,
Air-Liquide, Portugal); 1.2 mL/min flow rate; injector temperature,
220 °C; oven temperature, 40 °C for 1 min programmed at a rate of 2
°C/min to 220 °C, maintained during 30 min; splitless time, 0.5 min;
split flow, 30 mL/min.

To facilitate identification, the Kovats index for each peak was
calculated as described by Van den Dool and Kratz.40 This
determination was performed on polar phase columns, BP21 (50 m
× 0.25 mm × 0.25 μm).

Amino Acid Analysis. Twenty-one amino acids were analyzed in the
Port wine samples: aspartic acid, glutamic acid, cysteine, asparagine,
histidine, serine, glycine, arginine, threonine, alanine, γ-aminobutyric
acid, tyrosine, ethanolamine, valine, methionine, tryptophan, phenyl-
alanine, isoleucine, leucine, ornithine, and lysine. The methodology
used was that described by Pipris-Nicolau et al.41

Acetaldehyde, Furanic Compounds, and Sotolon Analysis. These
analyses were done as described by Silva Ferreira et al.19

Data Preprocessing. The ASCII file of chromatographic data
obtained from each sample was extracted and a matrix created
containing all of the chromatograms. The intensities were normalized
by dividing each value by the intensity of the internal standard (3-
octanol). The raw data set (GC-FID) was then imported into The
UnscramblerX 10.1 (Camo, Sweden), where the first stage of the
alignment of chromatograms was performed using correlation
optimized warping (GC-FID-COW). This algorithm aligns chromato-
grams by means of sectional linear stretching and compression, which
shifts the peaks of one chromatogram to correlate with those of the
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other chromatograms in the data set.42 The saturated peaks were then
removed and the baseline corrected (GC-FID-COW-saturated
removed and baseline correction). The resulting matrix (GC-FID-X)
was then used for multivariate data analysis as described under
Statistical Analysis.
Statistical Analysis. The data were analyzed with PCA and PLS-R

using either Qlucore (Lund, Sweden) or SIMCA-P+ 12.0.1 (Umetrics,
Norway). PCA shows similarities between samples projected on a
plane and makes it possible to determine which variables determine
these similarities and in what way. PLS is used to extract factors related
to one or more response values. PLS validation was performed by
cross-validation method.
Kinetic Network Reconstruction. To attempt to reconstruct the

underlying kinetic network, the fingerprint needed to be further
compressed to a single value for each putative molecule detected by
GC-FID. Thus, each chromatographic peak needed to be replaced
with a single value for the intensity and retention time, at the apex of
each peak, and therefore a more refined alignment procedure was
required. This was achieved as follows: An “average chromatogram”
was created by taking the mean of the values at each elution point in
the GC-FID-X matrix. The average chromatogram and the sample
chromatograms were smoothed with the Savitzky−Golay method
(settings: left = 15, right = 15, polynomial degree = 0)43 as
implemented in The Unscrambler X 10.1. The wavelet method of Du
et al.,44 which was originally developed for peak calling in peptide mass
spectrometry data, was adapted for finding peak centers in
chromatographic data and a Mexican hat wavelet used to determine
the location of all of the peaks in the average and sample
chromatograms. A custom-built Perl program was integrated with
the R-based wavelet method to achieve this. The distances between the
locations of all of the peaks in each sample chromatogram and the
locations of the peaks in the average chromatogram were calculated. It
was observed that there was a correlation between peak height and the
amount of peak center shift that occurred across chromatograms, and
we thus devised a two-step process for aligning sample peaks to those
of the average chromatogram. If the (internal standard normalized)
height of the average peak was >2 and the distance to the nearest
sample peak was <0.3 min, then the intensity value of the sample peak
was assigned as the sample value at the average peak location.
However, if the (internal standard normalized) height of the average
peak was <2 and the distance to the nearest sample peak was <0.15

min, then the intensity value of the sample peak was assigned as the
sample value at the average peak retention time. This algorithm was
implemented in Perl.

As a result of this process a new matrix was created that contained
the retention time of all peaks in the average chromatogram and the
intensity values of all of the peak centers from each sample aligned to
these average retention times. Thus, a vector was created for each peak
(presumably representing a compound) across all samples. An all-
against-all comparison was done by calculating the Pearson correlation
between each and every peak vector. As such, one is able to track the
increase or decrease of compounds (peaks) during the aging process
and determine the correlative relationships among them. We applied a
Pearson correlation threshold of 0.8 and represented the remaining
relationships as a mathematical graph to form a correlation network
with the nodes representing peaks and the edges weighted with the
Pearson correlations between the peak vectors. To reconstruct the
most likely kinetic network underlying the set of chemical reactions
involved in the aging process, a maximum spanning tree was created
by transforming the edge weights into inverse correlations (by taking
the difference between the number 1 and the absolute correlation
values) and the subsequent use of a minimum spanning tree (mst)
algorithm45 on the this inverse correlation network. A minimum
spanning tree represents the shortest possible path through a graph
and, as such, selects for the smallest inverse correlation (i.e., highest
correlation) pairs between all nodes in the network. The resulting
networks were visualized in Cytoscape.46

■ RESULTS/DISCUSSION
Principal Component Analysis. Our initial goal for the

use of PCA was to examine the intrinsic variation in the data set
prior to alignment to determine if the volatile fraction of the
samples followed a trend related to age. However, when using
the GC-FID matrix described above, some samples did not
follow the latent age variable described by PC1, namely the 4-
and 60-year-old samples (score plot not shown). The analysis
global workflow is described in Figure 1.
The loading plot in Figure 2 shows higher levels of acetic

acid, 2,3-butanediol, diethyl succinate, diethyl malate, phenyl-
ethanol, and succinic monoethyl ester present in the older
samples. The esterification process appears to be the most

Figure 1. Proposed workflow for univariate (chromatographic) signal processing.
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prevalent reaction among the compounds apparent in the
loading plot. The organic acids naturally present in grape must,
such as malic acid, and those present as the result of
fermentation, such as lactic, succinic, and acetic acids, all
react with ethanol to yield the esters seen in the loading plot.47

However, these molecules are out of the detector’s linear
response range, so they needed to be eliminated. Furthermore,
the chromatograms must be aligned because an unavoidable
characteristic of all chromatographic data is that the retention
times for the peaks in the chromatograms shift slightly from
one analysis to another. To address this problem, COW was
used to align all of the chromatograms.
A new fingerprint was created (GC-FID-COW) by the

removal of saturated peaks and baseline correction to yield the
GC-FID-X matrix, which was subsequently analyzed by PCA.
The new score plot shows the same latent age variable
described by PC1, but the explained variance of the first two
components is 74% (Figure 3), and the samples that did not
previously follow the age vector now do so after alignment.
The score plots in Figure 3A,B show a clear trend related to

wine age, suggesting that the chemical mechanisms are
correlated with time across the first principal component,
with the first two components explaining 74% of the variance. It
appears that the latent age vector remains intact whether the
data are mathematically normalized or not.
It is important to note that the data for both the PCA and

PLS analyses were not mathematically centered or normalized
as is commonly done to give all variables equal impact on the
model. Centering is usually used as a matter of convenience for
display and mathematically has no impact on the multivariate
model. When we viewed the loadings, we chose not to center

Figure 2. Raw chromatogram overlay of all samples (n = 31) and
loading plot (PC1) representing the average GC-FID chromatogram:
(1) ethyl lactate, (2) acetic acid, (3) 2,3-butanediol, (4) diethyl
succinate, (5) phenylethanol, (6) diethyl malate, and (7) succinic
monoethyl ester.

Figure 3. PCA score plots of cleaned and COW-aligned chromatograms: (A) un-normalized; (B) normalized. Colors denote wines of age 2−7 years
(yellow), 10−42 years (blue), and 48−60 years (pink). (C) Loading plot of PC1 with nine of the peaks identified as (1) furfural, (2) cis-dioxane, (3)
benzaldehyde, (4) 5MF, (5) cis-dioxolane, (6) trans-dioxolane, (7) octanoic acid, (8) unknown, and (9) HMF.
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the data to not have negative scores along PC1 and thus to have
no negative peaks on the loading plot to keep the loading plot
looking as much like a normal chromatogram as possible. We
are aware that our choice not to normalize means that peaks
with higher intensities will have a larger impact on the model
and be more apparent in the loading plots shown in Figures 2
and 3. However, this allows the patterns visible in the loading
plots to be recognizable to an analytical chemist and therefore
easily read and interpreted as a normal chromatogram.
Mathematical normalization unfortunately makes the standard
chromatographic patterns unrecognizable as it rescales every
peak to the same amount of variance. In addition, as can be
seen from Figure 3A,B, normalization does not change the fact
that PC1 comprises the age vector with the biggest affect of
normalization changing the sample distribution along PC2,
which is likely to represent vintage and vinification technology
effects. This suggests that the aging of wine largely overwhelms
the differences between wines that are present due to the
season they were made in or variations among the approaches
used to make them (different yeast strains, temperatures,
crushing mechanisms, fermentation tanks, barrels used for
maturation, etc.). The primary purpose of PCA and PLS in our
pipeline is as a graphical user interface for analytical chemists to
use as a screening step for univariate data sets. As such, we
strove to present the analytical chemist with a multivariate
interpretative environment with which they would be as
familiar as possible, namely, chromatographic fingerprints
with which they have great experience. Thus, we feel that, for
this part of the analysis, the visual representation of the
chromatographic loading plots outweighs the assignment of
equal weights to every variable in the model. Furthermore, we
address this variable normalization issue with the use of
network reconstruction via Pearson correlation networks and
maximum spanning trees. In the network analysis, every peak is
analyzed and has an equal opportunity to form a part of the
network and Pearson correlation includes vector normalization.
During aging there are likely to be several different

mechanisms involved, including oxidation and Maillard
reactions. In PC1 the samples correlate with the age of the
wine, which points out that the overall kinetic system overrides
any one specific mechanism. As such, the connections between
the mechanisms at play are more relevant to sample
classification than the contributions of any individual
mechanism.
After alignment, compounds that appear to correlate with

Port wine aging as found in the loading plots were cis-dioxane,
cis-dioxolane, trans-dioxolane, trans-dioxane, octanoic acid, and
HMF as shown in Figure 3C.
The cis- and trans-dioxane and -dioxolane are formed by the

condensation reaction between glycerol and acetaldehyde.
These molecules were identified in Port wine by Silva Ferreira
et al.,48 who noted that they increased with age, and, as such,
could be used as age markers for Port wine kept under oxidative
conditions. Furanic compounds, HMF, 5MF, and furfural, are
thought to be products from the Maillard reaction, formed by
the fragmentation or cyclization of 3-deoxyosone, a highly
reactive intermediary of the reaction.49 Barrel oak can also be a
source of HMF and furfural.50

Partial Least-Squares Analysis. PLS analysis was used on
the GC-FID-X matrix in an effort to associate specific peaks/
fingerprint regions with mechanisms known to be involved in
aging. It is worth noting that PLS was not used in its traditional
role as a method with which to build calibrated, predictive

models (that would therefore be built with training sets and
validated with independent test sets). Rather, the goal of our
use of PLS-1 was simply as a method with which to perform
principal component based regressions in an effort to identify
sets of peaks that were associated with known mechanistic
markers or potential precursors for volatile compounds.
Molecules that are thought to be associated with different
mechanisms were selected and quantified from each sample and
used as markers to try to find other compounds in GC-FID-X
that may be related with the same mechanism. Acetaldehyde
and HMF were used as markers for oxidation and the Maillard
reaction, respectively. Sotolon was also used in an effort to
gather more information about its origin. The concentration of
each of the marker molecules was determined for each sample,
and the resulting vectors were used as a second data block in
PLS.
The resulting PLS coefficient plots show the variables that

correlate with each mechanism marker. Some variables have a
positive value, which means that these have kinetic vectors
which correlate with that of the mechanism marker, and some
have negative values, which indicate that they have an inverse
correlation with the kinetic vector of the mechanism marker.
For sotolon the correlation is 0.89 (over seven components)

for molecules such as furfural, 5-MF, cis-dioxane, cis-dioxolane,
trans-dioxane, trans-dioxolane, and HMF. We also found some
organic acids with negative correlations, which indicate that
they were being consumed as sotolon was being formed (Figure
4). The model had correlations of 0.91 for HMF (a Maillard

reaction marker) and 0.92 to acetaldehyde (an oxidation
marker) for seven latent variables. The PLS loading plot for
sotolon was very similar to those seen for HMF and
acetaldehyde, which means that the mechanisms are correlated
and during aging contribute in the same way to the dynamics of
the overall process.
Some amino acids, namely, valine, alanine, arginine,

glutamine, and aspartate, had relatively high (0.69−0.83)
inverse correlations with a number of peaks in the volatile
profile, which were themselves correlated to Maillard reaction
markers such as HMF and furfural. Thus, it seems likely that
these amino acids are major Maillard aroma precursors.

Network Reconstruction. Figure 5 shows the maximum
spanning tree derived from the correlation network between all
peaks. Each node represents the center of a peak (Kovats
index), and each edge represents the best correlation between
the peaks. Fold changes between 2- and 60-year-old wines were
calculated for each peak and the nodes colored accordingly with

Figure 4. PLS b coefficients for sotolon as the Y vector with seven
latent variables.
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shades of red representing increasing concentration and blue
representing decreasing concentration. The thickness of each
edge has been scaled to represent the level of correlation
(thicker lines mean higher correlation values). Furthermore, the
size of each node has been scaled to represent the number of
correlations it had with other peaks above a threshold of 0.8.
Using pure standards as markers for Maillard and oxidation

together with the Kovats index, it is possible to explore and
extract more information from the proposed network. In fact,
the cyclic acetals of glycerol and ethanal (oxidation products)
cluster together on the upper part of Figure 5. In addition, 5-
ethoxymethylfurfural, an ester of a major Amadori product
(HMF), links two major branches of the network. As such, the
network illustrates the aging process with the continuous
formation of substances absent in young wines, which explains
the aging character of wine. The volatile compounds that relate
to 5-ethoxymethylfurfural are coexpressed during aging, thus
presenting similar kinetics, and future work will focus on their
identification using the respective Kovats index and rich
information detectors such as MS. The network representation
captures some of the dynamics of the aging process based on
the underlying kinetics. In fact, those compounds that are
highly correlated to one another (>0.9) are likely to have the
same kinetic order, and the network thus enables one to screen
molecules according to their kinetic parameters.
We propose that this network is an approximate

representation of the underlying chemical reaction network
during aging. The higher level of correlation (and therefore the
nearer any two peaks are to each other in the network), the
higher the probability is that they participate in the same or
neighboring reactions. The correlation between compounds

drops as you move farther away in a chemical reaction network,
as the intervening kinetics of each reaction will cause
differences at each step. There are no doubt intermediate
compounds for some reactions that were not detected by FID.
The network is robust to this missing data as the intervening
steps will simply be represented by a lower correlation value of
an edge between compounds that were detected. This
correlative approach of course is not proof of causation but
rather serves as a useful tool for hypothesis generation to
prioritize the identification of unknown compounds repre-
sented by the peaks.
By using correlation values to targeted compounds (or other

variables such as age) we found that we could highlight the
regions of the network that are closely associated with them
and therefore likely involved in their formation or con-
sumption. To explore regions of the network that may be
related to age and particular mechanisms, Pearson correlation
values between the peaks and each of the target vectors (sample
age, sotolon, acetaldehyde, HMF, glutamate, and alanine) were
loaded into cytoscape as node annotations. Alanine and
glutamate were selected as target vectors because they were
the amino acids best correlated with the GC-FID-X matrix. By
sorting the nodes by correlation values and selecting the nodes
corresponding to a correlation value with a target above some
threshold, portions of the network that correlated with each
target vector could be visualized in aqua as shown in Figure 6.
Figure 6A shows the nodes with a 0.86 Pearson correlation to

the age of the wines. There is a clearly defined subnetwork that
corresponds to age and represents compounds involved in the
aging process. It was clear in the PCA diagrams that there are a
group of compounds that correspond to aging which are

Figure 5. Putative kinetic network. Nodes are colored in shades of red based on the fold change from 2 to 60 years. Node sizes are scaled by the
number of other nodes (peaks) that are correlated to them above a Pearson threshold of 0.8. Edge thickness is scaled by the degree of correlation
between its two nodes. (Dioxanes in the network are labeled as follows: cis-dioxane, Diox 1-cisdioxane; cis-dioxolane, Diox 2-cisdioxolane; trans-
dioxolane, Diox 3-transdioxolane; and trans-dioxane, Diox 4-transdioxane.)
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responsible for the first principal component. It is likely that the
compounds responsible for the second principal component are
due to differences between the vintages of the starting wines.
We can see the same pattern in this network, where there are a
number of compounds that do not correlate well with age and
are likely reflecting vintage differences among the wines.
Panels B, C, and D, respectively, of Figure 6 show the regions

of the network (colored as aqua) that correlate (Pearson
threshold = 0.86) with sotolon, HMF, and acetaldehyde,
respectively. It is clear that there is considerable overlap
between the subnetworks correlated with these three
compounds, and as such it is possible that there is a mixture
of oxidation and Maillard reactions at play in forming these
compounds. The subnetwork that correlates with age at a
Pearson threshold of 0.86 in Figure 6A clearly overlaps to a very
large degree with the subnetworks defined by the correlations
to acetaldehyde, HMF, and sotolon. The arrow in Figure 6A
shows the node that negatively correlates to both alanine and
glutamate (−0.8 Pearson threshold) and as such likely
represents the entry point to the volatile network. The fact
that the anticorrelation is relatively low (−0.8 to −0.83)
probably indicates that there are one to several intermediates
between the amino acids and their products’ entry into the
volatile network.
We believe we have demonstrated that the approach

described here using GC-FID univariate data, when used as
sample fingerprints, can be used to classify the age of Port wine

and to predict potential molecules involved in this process by
the deconvolution of time and the kinetics of different aging
mechanisms. We began this analysis with the hope that
multivariate analysis and network reconstruction would be
useful tools with which to study mechanisms related to a
perturbation. The PCA score plots allow for sample
classification and the visualization of larger peaks that
correspond with aging. The PLS loading plots provide the
analytical chemist with a familiar set of patterns, namely, virtual
chromatograms which point out the larger peaks that appear to
be associated with marker compounds for oxidation and
Maillard mechanisms. The network reconstruction is very
useful in visualizing the relationships between all of the
compounds detected via GC-FID and their changes in
concentration over time. This view of the data should provide
considerably more information in an effort to understand the
probable kinetic contexts of the molecules represented by peaks
in each chromatogram. Furthermore, it is possible to identify
regions of the network that appear to be involved in the
formation or consumption of target compounds. As such, the
approach described here should indeed be a very powerful tool
for the further study of mechanisms and kinetic networks in
complex mixtures.
In conclusion, univariate chromatographic signals are less

expensive compared to NMR or MS and therefore constitute a
valuable tool in a bioanalytical pipeline. However, the use this
type of data in an untargeted approach required the

Figure 6. Subnetworks correlating to (A) age, (B) sotolon, (C) HMF, and (D) acetaldehyde. Nodes (compounds) with strong Pearson correlations
to these target vectors are colored aqua.
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development and use of new data processing methods and
graphical user interfaces to extract the maximum amount of
information from the data. The approach reported here enables
us to (1) minimize the cost of analysis, (2) perform sample
classification and contextualization, (3) perform process
monitoring of aging or other time series, (4) consider the
prospect of building databases from the large amounts of
univariate data already available, (5) screen for correlations with
known mechanism markers, (6) select biomarkers for
identification and further study, and (7) explore the putative
kinetic network for a greater understanding of the process being
studied.
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